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Chapter Two 

Servomotors 

Servomotors: 

Servomotors ( control motors) are motors which are designed and built for use in 

feedback control systems. They have high speed of response and they are made for 

d.c. as well as for a.c. operation. These motors usually fractional horsepower motors 

having low efficiency. 

Two-phase servomotors: 

An a.c. servomotor is an induction motor with two primary windings mutually 

displaced in magnetic position from one another by 90

 electrical degrees. It has low 

inertia and high-resistance rotor, thus, giving a speed-torque curve that is linear in 

shape from no load speed to stand-still. 

  

 

 

 

 

 

 

 

It is designed for operation with a constant voltage applied to one of the windings , 

called the fixed phase , while a time-displaced adjustable voltage is impressed on the 

other winding which is called the control winding. 

The two phase induction motor is the most important machine which is used as a 

servomotor. This is because: 

1-  No brushes and slip-rings are used. Thus, less maintenance is required and the 

motor is rugged and robust in construction. 
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2-  The motor requires only a simple control amplifier. 

Construction: 

 

 

 

 

 

 

 

 

Stator: 

The stator is similar to that of the split-phase induction motor. It has two windings 

called control winding and reference winding displaced by 90

 electrical angle with 

each other. The two windings may be identical or not depending on the applications. 

Rotor: 

There are three different rotor types. The squirral cage rotor, the solid iron rotor and 

the drag cup rotor. 
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The squirral-cage rotor is usually small in diameter to keep the mechanical inertia 

as low as possible and the rotor has high resistance in order to obtain linear speed-

torque characteristics. The rotor winding is skewed in order to: 

1- make the motor run quietly by reducing the magnetic hum. 

2-  reduce the locking tendency of the rotor, the tendency of the rotor teeth to remain 

under the stator teeth due to direct magnetic attraction between them. 

The solid iron rotor consists of a solid cylinder of steel without any conductors or 

slots. The motor operation depends upon the production of eddy currents in the steel 

rotor. Thus , the rotor must have, in addition to good magnetic properties, high 

conductivity so that sufficient eddy current can flow in the rotor. No skewing is 

required since there are no teeth. The torque developed by this motor is lower than that 

of the squirral-cage rotor. 

The drag-cup rotor consists of a cup of a nonmagnetic conducting material such as 

copper. This rotor is used for low output motors (few watts) in order to minimize the 

moment of inertia. The drag-cup rotor can be described as a special from of squirral-

cage rotor in which the rotor teeth are removed, the rotor core is held stationary and 

the squirral cage bars and the end rings are replaced by a cylinderical cup,. 

Principles of operation: 

Two phase balanced operation: 

The two windings have equal number of turns of the same cross section, i.e., 

symmetrical two-phase windings. Balanced two-phase supply is applied. 
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Z1=R1+jX1 = stator impedance. 

Z2 =
R2

′

S
+ jX2

′ = rotor impedance. 

Zo =
Ro  jXm

Ro +jXm
=magnetising branch impedance. 

Vb 
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 
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Control phase 
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Xm 
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Zph = Z1 +
Zo  Z2

Zo + Z2
 

I1 =
V1

Zph
 

I2
′ = I1  

Zo  

Zo + Z2
 

rotor copper loss =2I2
′2R2

′  

rotor input=𝑃𝑔 = 2I2
′2R2

′ /S 

mechanical power developed =𝑃𝑑 = 2I2
′2R2

′ (
1−S

S
) 

output power =𝑃𝑜 = 𝑃𝑑 −(mechanical losses +rotor iron losses) 

power input =2𝑉1𝐼1 cos 𝜑1 = 𝑃𝑖  

ζ% =
Po

Pi
∗ 100 

developed torque = 𝑇𝑑 =
𝑃𝑑

𝜔
= gross-torque 

where: 𝜔 = 2𝜋
𝑁

60
= 2𝜋

(1−𝑆)𝑁𝑠

60
= (1-S)𝜔𝑠 

T= output torque (useful torque)=Td - Tloss 

where: Tloss is the friction and windage torque 

𝑇𝑑 =
2I2

′2R2
′ (

1 − S
S

)

𝜔
 

 =
2 R2

′ (
1 − S

S
)

(1 − 𝑆)𝜔𝑠
[

𝑉1

Z1 +
Zo  Z2

Zo + Z2

 
Zo  

Zo + Z2
]2 

∴ 𝑇𝑑 =
2

𝜔𝑠
 
R2

′

𝑆
[

Zo

Z1Z2+Z1Zo +Z2Zo
 ]2𝑉1

2 
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Unbalanced operation of 2-phase servomotor: 

The 2-phase windings are assumed to be balanced. i.e., the two windings have the 

same number of turns with the same conductors cross section area and they are 

displaced by 90

 electrical angle in space. 

Unbalanced voltages are applied: 

 

 

 

 

 

 

 

 

 

This unbalanced supply can be analysed into positive and negative balanced voltages: 

 

 

 

 

 

 

 

The negative sequence voltages will produce rotating field in the backward direction 

and thus producing backward torque. 

Va = Va1 + Va2 -------------------------( 1 ) 

Vb = Vb1 + Vb2 -------------------------( 2 ) 

Reference phase 

Control 

phase Vb 

θ ≠ 90

 

Va ≠  Vb 
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Va1 = j Vb1     -------------------------( 3 ) 

Vb2 = j Va2     -------------------------( 4 ) 

Va1 =  
Va +  jVb

2
 

 

Va2 =  
Va − jVb

2
 

 

Vb1 =  −j Va1 

 

Vb2 =  j Va2 

 

Determination of machine performance using the sequence components of 

voltages: 
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Using symmetrical components to analyse the 2-phase servomotor leads to a very 

useful and interesting physical interpretation of the analysis of the unbalanced two-

phase servomotor. The unbalanced voltages are replaced by positive and negative 

sequence voltages. The positive sequence components in each phase (Va1 and Vb1 ) 

produce revolving magnetic field which interacts with the rotor winding to produce a 

positive sequence torque T1. At the same time the negative-sequence components in 

each phase (Va2 and Vb2) produces revolving magnetic field which interacts with the 

rotor winding to produce a negative sequence torque T2. The rotor responds to the 

resultant torque which is the difference between T1 and T2. The techniques of balanced 

operation can now be used to determine T1 and T2 and the results can then be 

superposed to obtain the resultant. 

Equivalent circuit: 
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S =
Ns −N

Ns
     + ve sequence 

S2 =
Ns +N

Ns
      - ve sequence 

  =
Ns + (Ns − SNs)

Ns
=

2Ns − SNs

Ns
 

= 2 − S 

 

+ ve sequence response: 

Zph 1 = R1 + jX1 +
jXm (

R2
′

S
+ jX2

′ )

jXm +
R2

′

S
+ jX2

′
 

Ia1 =
Va1

Zph 1
 

I21
′ = Ia1 .  

jXm

jXm +
R2

′

S
+ jX2

′
 

Pg1 = 2I21
′2 R2

′

S
 

∴ T1 =
Pg1

ωs
=

Pg1

2π
Ns
60

 

 

Ns   

+ ve 

N   
 

Ns   

- ve 

jXm 

jX1 R1 Ia2 𝐈𝟐𝟐
′  

Va2 

𝐑𝟐
′

𝟐 − 𝐒
 

- ve sequence equivalent circuit 

𝒋𝐗𝟐
′  



- 41 - 
 

- ve sequence response: 

Zph 2 = R1 + jX1 +
jXm (

R2
′

2 − S
+ jX2

′ )

jXm +
R2

′

2 − S
+ jX2

′
 

Ia2 =
Va2

Zph 2
 

I22
′ = Ia2 .  

jXm

jXm +
R2

′

2 − S
+ jX2

′
 

Pg2 = 2I22 
′2 R2

′

2 − S
 

∴ T2 =
Pg2

ωs
 

∴ T = T1 − T2  

input power = input to phase a + input to phase b. 

                    = Va Ia cos a + Vb Ib cos b 

Output power = ω T 

ζ% =
output power

input power
∗ 100 

 

Example: 

A 5 watt, 60 Hz, two-pole, two-phase servomotor has the following parameters: 

                              R1 = 285 𝛺     ,    R2
′ = 850 Ω  

                              X1 = 60 𝛺        ,   X2
′ = 60 Ω 

                                         Xm = 995 Ω 

when it is operating at a slip of 0.6 , determine: 

( a ) the resultant torque in synchronous watts. 

( b ) the stator phase currents. 

b Ia 

Ib 

Va 

Vb 

a 
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( c ) the efficiency. 

Assume the servomotor operates with the following unbalanced two-phase voltage : 

Va = 120 0

  volts and Vb =75-60


 volts. Neglect mechanical losses. 

( a ) 

Va1 =   
Va + j Vb

2
 

       =   
1200 + j 75−60 

2
= 94.358 11.42  V        

Va2 =   
Va − j Vb

2
 

       =   
1200 −  75−60 

2
= 33.304 −34.264  V        

Zph 1 = R1 + jX1 +
jXm (

R2
′

S
+ jX2

′ )

jXm +
R2

′

S
+ jX2

′
 

Zph 1 = 285 + j60 +
j995(

850
0.6

+ j60)

j995 +
850
0.6

+ j60
 

            =1028.723 44.437  𝛺 

Ia1 =
Va1

Zph 1
=

94.358 11.42 

1028.723 44.437 
= 0.0917 −32.975  𝐴 

I21
′ = Ia1 .  

jXm

jXm +
R2

′

S
+ jX2

′
 

= 0.0917 −32.975  .  
j995

j995 +
850
0.6

+ j60
= 0.0517 20.35  𝐴 

Pg1 = 2I21 
′2

R2
′

S
= 2(0.0517)2

850

0.6
 

     = 7.5732 watts. 

Va 

Vb 

60
 
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T1 =
Pg 1

ωs
=

7,5732

2π
3600

60

= 20.089 𝑚𝑁. 𝑚.  

Ns =
120f

2p
=

120 ∗ 60

2
= 3600 𝑟. 𝑝. 𝑚. 

Zph 2 = R1 + jX1 +
jXm (

R2
′

2 − S
+ jX2

′ )

jXm +
R2

′

2 − S
+ jX2

′
 

= 285 + j60 +
j995(

850
2 − 0.6

+ j60)

j995 +
850

2 − 0.6
+ j60

 

= 774.332 26.877  𝛺 

Ia2 =
Va2

Zph 2
=

33.304 −34.264 

774.332 26.877 
= 0.04301 −61.141  𝐴 

I22
′ = Ia2 .  

jXm

jXm +
R2

′

2 − S
+ jX2

′
 

= 0.04301 −61.141  .  
j995

j995 +
850

2 − 0.6
+ j60

= 0.0352 −31.221  𝐴 

Pg2 = 2I22 
′2

R2
′

2 − S
=  2(0.0352)2

850

2 − 0.6
= 1.5045 𝑤𝑎𝑡𝑡𝑠. 

T2 =
Pg 2

ωs
=

1.5045

2π
3600

60

= 3.991 𝑚𝑁. 𝑚.  

The resultant torque in synchronous watts= Pg1 - Pg2 

                                   = 7.5732 - 1.5045= 6.0687 

(b)            Ia= Ia1 + Ia2 = 0.0917-32.975

 + 0.04301-61.141


 

                                    = 0.1312-41.877

 A 

               Ib= Ib1 + Ib2 = -j Ia1 +j Ia2 

                          =-j 0.0917-32.975

 +j 0.04301-61.141


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                                    = 0.0575-102.295

 A 

(c) 

a = 41.877

 

a = 102.295

-60


 

    = 42.295

 

input power = Va Ia cos a + Vb Ib cos b 

           = 120* 0.1312 cos 41.877

 + 75* 0.0575 cos 42.295


 

           =14.9126 watts. 

T=T1-T2 = 20.089 *10
-3

-3.991*10
-3 

              =16.098 m N.m. 

output torque = T          (neglecting Tloss) 

output power= Tω= 16.089 ∗ 10−3 ∗ 2π
 1−0.6 ∗3600

60
          

                     =2.4275 watts  

ζ% =
output power

input power
∗ 100 =

2.4275

14.9126
∗ 100 

         =16.2782 % 

Balanced operation: 

 

 

 

 

 

 

b 

Ia 

Ib 

Va 

Vb 

a 

jXm 

jX1 R1 Ia 𝐈𝟐
′  

Va 

𝐑𝟐
′

𝐒
 

Z1 

Z2 

Zp 

𝐣𝐗𝟐
′  
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Ia =
Va

Zph
 

∴ I2
′ = Ia .  

Zp

Z2
=

Va

Zph
.
Zp

Z2
 

∴ Pg = 2[
Va

Zph
.
Zp

Z2
]2

R2
′

S
 

Unbalanced operation: 

+ ve  sequence: 

 

 

 

 

 

Pg1 = 2[
Va1

Zph 1
.
Zp1

Z21
]2

R2
′

S
 

- ve  sequence: 

 

 

 

 

 

Pg2 = 2[
Va2

Zph 2
.
Zp2

Z22
]2

R2
′

2 − S
 

Pg1 = [
Va1

Va
]2Pg  

jXm 

jX1 R1 Ia1 𝐈𝟐𝟏
′  

Va1 

𝐑𝟐
′

𝐒
 𝐣𝐗𝟐

′  

jXm 

jX1 R1 Ia2 𝐈𝟐𝟐
′  

Va2 

𝐑𝟐
′

𝟐 − 𝐒
 𝐣𝐗𝟐

′  



- 46 - 
 

Pg2 = [
Va2

Va
]2Pg

′  

where:  

Pg
′ = 2[

Va

Zph 2
.
Zp2

Z22
]2

R2
′

2 − S
 

T =
1

ωs
[ 

Va1

Va
 

2

Pg −  
Va2

Va
 

2

Pg
′ ] 

∴ T =  
Va1

Va
 

2

TB1 −  
Va2

Va
 

2

TB2 

where: TB1 =
Pg

ωs
  denotes the developed torque at slip S for balanced two-phase 

operation at rated voltage. 

TB2 =
Pg

′

ωs
  denotes the developed torque computed at slip 2-S for balanced two-phase 

operation at rated voltage. 

The importance of this equation lies in the fact that the resultant torque at any slip 

and for any condition of unbalanced two-phase voltages may be computed in terms of 

the torque for full-voltage balanced operation. This information is usually supplied by 

the motor manufacturer. Hence, the torque-speed characteristic for various values of 

the control winding voltage can be determined without needing the equivalent circuit 

parameters. 

Example: Compute the resultant torque of the servomotor of the previous example 

using the last equation. 

 

 

 

 

 

 

𝐑𝟐
′

𝐒
 

jXm 

jX1 R1 Ia 𝐈𝟐
′  

Va 

𝐣𝐗𝟐
′  
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Ia =
Va

Zph
 

=
120 0 

1028.723 44.437 
= 0.1167 −44.437  𝐴 

I2
′ = Ia .  

jXm

jXm +
R2

′

S
+ jX2

′
= 0.1167 −44.437  .  

j995

j995 +
850
0.6

+ j60
 

= 0.0657 8.8877  𝐴 

Pg = 2I2 
′2

R2
′

S
= 2(0.0657)2

850

0.6
= 12.2301 𝑤𝑎𝑡𝑡𝑠 

Pg1 = [
Va1

Va
]2Pg = [

94.358

120
]2 ∗ 12.2301 = 7.5618 watts 

To find Pg
′  , the motor is assumed to be operating at a slip of 2-S=1.4 with balanced 

two-phase voltages applied. 

Ia =
Va

Zph 2
=

120

774.332 26.877 
= 0.15497 −26.877  𝐴 

I2
′ = Ia .  

jXm

jXm +
R2

′

2 − S
+ jX2

′
 

= 0.15497 −26.877  .  
j995

j995 +
850
1.4

+ j60
= 0.12668 3.043  𝐴 

∴ Pg
′ = 2I2 

′2
R2

′

2 − S
=  2(0.12668)2

850

1.4
= 19.4866 𝑤𝑎𝑡𝑡𝑠. 

Pg2 = [
Va2

Va
]2Pg

′ = [
33.304

120
]2 ∗ 19.4866 = 1.501 watts 

T =
1

ωs
 Pg1 − Pg2 =

1

2𝜋
3600

60

[7.5618 − 1.501] 

= 0.01608 N. m. 
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Servomotor torque-speed curves: 

The torque-speed curve of a two-phase induction motor supplied by a balanced two-

phase voltage has a shape similar to that of the three-phase induction motor as shown 

in curve "a". 

 

 

 

 

 

 

 

This characteristic is not suitable for control systems because of the positive slope 

over most of the operating speed range. The positive slope represents negative 

damping in the control system which in turn can lead to a condition of instability. 

Therefore for control systems applications the motor must be modified in a way that 

ensures positive damping over the full speed range. The usual way to achieve this 

result is to design the motor with very high rotor resistance. The torque-speed 

characteristic then will take the shape shown by curve "b". 

In many applications of the servomotor in feedback control systems , phase a is 

energized with fixed rated voltage (reference voltage), while phase b is energized with 

a varying control voltage that is usually obtained from a control amplifier. The control 

voltage is usually adjusted to be exactly 90

 out of phase with the reference voltage. 

Thus, the unbalance operation is only because of the unbalance in voltage magnitude. 

Assume 90

 phase shift between Va and Vb, we can define the quality K such that: 

 K =  
Vb

Va
  

∴ Vb = −j K Va  

S=2 

Torque 

low R2 

(a) 

S=1 
S=0 Slip 

high R2 

(b) 
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Va1 =
Va + jVb

2
=

Va + j(−jKVa)

2
 

 

∴    Va1 =
Va

2
(1 + K) 

 

similarly: 

Va2 =
Va − jVb

2
=

Va − j(−jKVa)

2
 

 

∴    Va2 =
Va

2
(1 − K) 

 

 

 

 

 

 

 

 

 

 

The above figure represents the torque-speed curves for a two-phase servomotor for 

various values of the control voltage expressed as a fraction (K) of the reference 

voltage. K=1 means balanced operation. 

If the information about the torque-speed characteristic of the servomotor is 

supplied by the manufacturer for balanced rated operation over ther full range of slip 

from zero to 2, then the torque-speed characteristic for any value of K can be easily 

determined without using the equivalent circuit by the following equation: 

Torque 

K=0.087   

1000 2000 3000 4000 5000 6000 Speed 

K=0.26   

K=0.435   

K=0.61  

K=0.87   

K=1   
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T =  
Va1

Va
 

2

TB1 −  
Va2

Va
 

2

TB2 

 

∴   T =  
1 + K

2
 

2

TB1 −  
1 − K

2
 

2

TB2 

 

 

 

 

 

 

 

 

 

Thus, to calculate the speed-torque characteristic for K=1/2: 

T =  
1 +

1
2

2
 

2

TB1 −  
1 −

1
2

2
 

2

TB2 =  
3

4
 

2

TB1 −  
1

4
 

2

TB2 

 

T =
9

16
TB1 −

1

16
TB2 

Taking a set of values for S and evaluating TB1 and TB2 from the given speed torque 

characteristic, when K=1 , it is possible to determine T for these values of S and thus 

to draw the torque-speed characteristic. 

 

 

 

 

S=2 

Torque 

S=1 
S=0 Slip 2-S 

S 

TB2 

TB1 
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TB1 and T B2 can be calculated as follows using the equivalent circuit parameters: 

Td =
2

ωs
.
R2

′

S
 [

Z0

Z1Z2 + Z1Z0 + Z2Z0
]2V1

2 

∴ TB1 =
2

ωs
.
R2

′

S
 [

Z0

Z2(Z1 + Z0) + Z1Z0
]2Va

2 

        =
2

ωs
.
R2

′

S
 [

Z0  Va

Z1 + Z0
]2[

1

Z2 +
Z1Z0

Z1 + Z0

]2 

let     
Z1Z0

Z1+Z0
= R′ + jX′    

      ∴ TB1   =
2

ωs
.
R2

′

S
 [

Z0  Va

Z1 + Z0
]2[

1

R2
′

S
+ jX2

′ + R′ + jX′

]2 

      ∴ TB1   = C

1
S

(
R2

′

S
+ R′)2 + (X2

′ + X′)2

 

similarly: 

S=2 

Torque 

S=1 
S=0 Slip 

K=1  +ve sequence 

K=1/2 

Va1=3/4 Va 

Va2=1/4 Va 

K=1  -ve sequence 
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∴ TB2   = C

1
2 − S

(
R2

′

2 − S
+ R′ )2 + (X2

′ + X′ )2

 

where: 

C  =
2

ωs
. R2

′  [
Z0  Va

Z1 + Z0
]2 

Two-phase servomotor transfer functions: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference 

 winding 

Control  

winding 
Vb 

Va 

Rb Ib 

C 

 

Load 

J 
FL 

Lb 

squirral cage rotor 

Torque 

Speed 

K=0.26   

K=0.435   

K=0.61  

K=0.87   
K=1   

TK=1   

TK=0.87   

Typical torque-speed 

characteristics of servomotor 

KM =
𝐓𝐊=𝟏 − 𝐓𝐊=𝟎.𝟖𝟕

𝑉𝑏1 − 𝑉𝑏2
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The servomotor is assumed to be operated at a fixed reference voltage. The variable 

input is the control winding voltage Vb. The torque-speed curves are assumed to be 

linear. Thus, an increase in motor torque results either by an increase in control 

winding voltage or by decrease in speed for fixed Vb. 

Thus, 

T  = KM Vb − FM

dθ

dt
 

where: T=motor developed torque. 

            KM = motor torque constant (Nm/volt). 

            FM =motor equivalent viscous-friction constant (Nm/rad/sec). 

It can be seen from the torque-speed curves that FM is the slope of the torque-speed 

curve at constant Vb. Also KM is the change in torque per unit of change in control 

voltage Vb at constant speed. 

Equating this torque to load torque gives: 

KM Vb − FM

dθ

dt
= J

d2θ

dt2 + FL

dθ

dt
 

where: J=rotor inertia + load inertia referred to motor shaft. 

           FL =viscous friction of load referred to motor shaft. 

viscous friction = friction which is proportional with speed. 

KM Vb = J
d2θ

dt2 + (FM + FL)
dθ

dt
 

KM Vb = J
d2θ

dt2 + F
dθ

dt
 

where: F=FM + FL 

Taking Laplace transform yields: 

KM Vb(s) = Js2θ(s) + Fsθ(s) 

θ(s)

Vb(s)
=

KM /F

s(1 + s J/F)
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∴       
θ(s)

Vb (s)
=

Km

s(1+sτm )
 

  

where:      Km =
KM

F
 

                 τm =
J

F
= motor time constant. 

 

 

 

Effect of the control winding time constant: 

In the above derivation of control motor transfer function the control winding time 

constant was neglected. A more exact description of the servomotor transfer function 

can be obtained by knowing that the control winding voltage produces control winding 

field current Ib which in turn produces the flux that enables the motor to develop 

torque. Thus, 

  

T  = KbIb − FM

dθ

dt
 

  

 

 

 

 

 

∴ KbIb − FM

dθ

dt
= J

d2θ

dt2 + FL

dθ

dt
 

Torque 

Speed 

Ib1 

Ib2 

Ib3 

Ib4 
Ib4 > Ib3 > Ib2 > Ib1 

Km

s(1 + sτm )
 

𝐕𝐛(𝐬) (s) 
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KbIb = J
d2θ

dt2
+  FM + FL 

dθ

dt
=  J

d2θ

dt2
+ F

dθ

dt
 

where: F=FM + FL 

Taking Laplace transform yields: 

KbIb(s) = Js2θ(s) + Fsθ(s) 

θ(s)

Ib (s)
=

Kb /F

s(1+τm s )
 − − − − − −(1) 

where:         τm =
J

F
 

vb = Rb ib + Lb

dib

dt
 

Vb s = RbIb s + Lb sIb(s) 

Ib(s)

Vb(s)
=

1

Rb(1 + τbs )
 − − − − − −(2) 

where:         τb =
Lb

Rb
 = control winding time constant. 

Multiplying equations (1) and (2): 

θ(s)

Vb(s)
=

Kb

F Rb

s 1 + τm s  (1 + τbs )
 

From this equation  
Kb

Rb
= KM   

∴    
θ(s)

Vb(s)
=

Km

s 1 + τm s  (1 + τbs )
 

 

 

 

 

 

 

T = KM vb − FM

dθ

dt
 

T = Kbvb − FM

dθ

dt
 

KM vb = Kb Ib  

KM =  
Kb

Rb
 

Vb

Ib
= Rb  (steady state ) 

 

Lb Rb Ib 

Vb 
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Motor characteristics in the presence of finite control-impedance: 

 

Eb   = Vb + IbZb  

Assuming that 

Eb   = −j KVa  

 

 

 

 

 

 

Ib   = Ib1 + Ib2 =
Vb1

Z1
+

Vb2

Z2
 

Z1 = + ve sequence impedance ( at slip s) 

Z2 =  - ve sequence impedance ( at slip 2-s) 

∴ Ib   =
−jVa1

Z1
+

jVa2

Z2
 

∵ Va   = Va1 + Va2        ∴ Va2   = Va − Va1 

∴ Ib   =
−jVa1

Z1
+

jVa

Z2
−

jVa1

Z2
 

Eb   = Vb + IbZb  

Vb   = Vb1 + Vb2 = −jVa1 + jVa2 = −jVa1 + j(Va − Va1) 

      = −2jVa1 + jVa  

∴ Eb   = −jKVa = −2jVa1 + jVa + Zb [
−jVa1

Z1
+

jVa2

Z2
−

jVa1

Z2
] 

Va  −K − 1 −
Zb

Z2
 = Va1  −2 −

Zb

Z1
−

Zb

Z2
  

 

 

Vb 

Va 

~ 

Zb Ib 

Eb 
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∴    
Va1

Va
=

1 + K +
Zb

Z2

2 +
Zb
Z1

+
Zb
Z2

 

 

Va2 = Va − Va1 = Va − Va [
1 + K +

Zb

Z2

2 +
Zb
Z1

+
Zb
Z2

] 

 

∴    
Va2

Va
=

1 − K +
Zb

Z1

2 +
Zb
Z1

+
Zb
Z2

 

 

∴   T =  
Va1

Va
 

2

TB1 −  
Va2

Va
 

2

TB2 

=  
1 + K +

Zb

Z2

2 +
Zb
Z1

+
Zb
Z2

 

2

TB1 −  
1 − K +

Zb

Z1

2 +
Zb
Z1

+
Zb
Z2

 

2

TB2 

if     Zb=0 

∴   T =  
1 + K

2
 

2

TB1 −  
1 − K

2
 

2

TB2 

Damped AC servomotors: 

servomotors are used in feedback control systems. The servomotors are used to actuate 

something directly or indirectly. Now, for successful operation of a control system, the 

servomotor must fulfill at least the following two things: 

1- The motor must have high response to changes in control phase voltage. 

2- The motor must be stable, i.e., it must not oscillate or overshoot. 

Fast response can be achieved by having high torque to inertia ratio. Overshooting is 

minimized and stability is achieved by the use of damping or retarding torque that 
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increases with speed. The damping torque can be developed by the motor itself or 

viscous damper or an inertia damper or a tachometer. 

D.C. servomotors: 

D.C. motors are used in the power output stage of large class of servomechanism. In 

high power applications, the d.c. motors are preferred over a.c. motors because of the 

ease of control of the speed and direction of rotation. 

1- Armature-controlled d.c. motor: 

 

 

 

 

 

 

 

 

where: 

J = The combined inertia of the load and the rotor of the motor. 

F = The equivalent viscous friction of the motor and the load. 

TL = The opposite load torque. 

La = The armature leakage inductance. 

Ra = The armature winding resistance. 

ω = The angular speed of the rotor. 

Rf = The field resistance. 

Lf = The field leakage inductance. 

Assume we wish to find the manner in which the motor speed responds to changes in 

the applied armature winding voltage for constant field current and negligible 

armature leakage inductance. 

The electromagnetic torque of the motor T is equal to: 

La Ra 

Va 

Ia 

Ea M 

Lf Rf 

If 

Vf 

field 

circuit 

Mechanical  

Load 

ω 

J , F, TL 
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T= K . Φ . Ia 

where   Φ= airgap flux 

∵ If = constant 

∴ Φ = constant 

∴ T =Kt . Ia 

Ia =
T

Kt
− − − − −  1  

Va = Ea + IaRa  

Ea = K. Φ. ω = Kω . ω 

where  Kω = Kt  

∴ IaRa = Va − Kω . ω − − − (2) 

from (1) in (2) 

T 
Ra

Kt 
=  Va − Kω . ω 

∴ T =
Kt 

Ra
 Va − 

Kω . Kt 

Ra
ω 

Taking Laplace transform for this equation gives: 

T s =
Kt 

Ra
 Va s −  

Kω . Kt 

Ra
ω s − − − −(3) 

 

 

 

 

 

 

 

At the motor shaft, the electromagnetic torque at the motor must be equal to the sum 

of the opposing torques. Thus, 

𝐊𝐭  𝟏

𝐑𝐚
 

𝐊𝛚  

T(s) Ia Ia Ra Va(s) 

ω(s) 

+ 

_ 
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T = J
dω

dt
 +F ω + TL  

Taking Laplace transform gives: 

T s − TL s = Jsω s + F ω(s) 

∴
ω(s)

T s − TL s 
=

1

F(1 + sτm )
− − − −(4) 

where τm =
J

F
= mechanical time constant. 

 

 

 

 

 

 

 

 

From this block diagram and for TL equal zero: 

ω s = ( Va s − Kω ω s )
Kt /Ra

F(1 + sτm )
 

ω s 
F(1 + sτm )

Kt /Ra
+ Kω ω s =  Va s   

ω s [
F 1 + sτm +

Kt Kω 

Ra

Kt 
Ra

] =  Va s   

ω s 

Va s 
=

Kt /Ra

F 1 + sτm +
Kt Kω 

Ra

=  
Kt /Ra

F + sτm F +
Kt Kω 

Ra

 

=
Kt 

FRa + Kt Kω + sτm FRa
 

+ 

_ 

Kt 

𝟏

𝐑𝐚
 

𝐊𝛚  

T(s) Ia(s) Ia Ra Va(s) ω(s) 

TL(s) 

𝟏

𝐅(𝟏 + 𝐬𝛕𝐦)
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=
Kt 

 FRa + Kt Kω  (1 + s
τm FRa

FRa + Kt Kω 
)
 

ω s 

Va s 
=

Kt 

FRa + Kt Kω 
.

1

1 + sτm
′

 

where   τm
′ =

τm FRa

FRa +Kt  Kω 
=

J Ra

FRa +Kt  Kω  
 

It is possible to derive the desired transfer function without first developing the block 

diagram. 

From equation ( 3) and (4 ) for TL=0.0 gives: 

ω s  F 1 + sτm  =
Kt 

Ra
Va s −

Kt Kω 

Ra
ω s  

ω s  F 1 + sτm +
Kt Kω 

Ra
 =

Kt 

Ra
Va s  

ω s 

Va s 
=

Kt 

FRa 1 + sτm + Kt Kω 
=

Kt 

FRa + Kt Kω + sτm FRa
 

 

ω s 

Va s 
=

Kt 

FRa + Kt Kω 
.

1

1 + sτm
′  

 

What is the dynamic response of the motor speed to a step change in the applied 

armature voltage Va? . 

Va s =
Va

s
 

∴ ω s =
Va Kt 

FRa + Kt Kω 
.
1

s
.

1

1 + sτm
′  

=
VaKt 

τm
′ (FRa + Kt Kω )

.
1

s
.

1

s +
1
τm

′

 time 

voltage 

Va 
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=  
C1

s
−

C2

s +
1
τm

′

 =
C1s + C1

1
τm

′ − C2s

s(s +
1
τm

′ )
 

C1s − C2s = 0 

∴ C1 = C2 

C1

1

τm
′

=
VaKt 

τm
′ (FRa + Kt Kω )

 

∴ C1 = C2 =
Va Kt 

FRa + Kt Kω 
 

∴ ω s =
Va Kt 

FRa + Kt Kω 
[
1

s
−

1

s +
1
τm

′

] 

The time solution for this equation is: 

ω t =
Va Kt 

FRa + Kt Kω 
[1 − e−t/τm

′
] 

At    La≠0 

IaRa + La

dIa

dt
+ Ea = Va  

Ea = Kω ω 

IaRa + La

dIa

dt
+ Kω ω = Va  

Taking Laplace transform: 

Ia(s)Ra + La sIa(s) + Kω ω(s) = Va(s) 

Ia s (Ra + La s) + Kω ω(s) = Va (s) 

Substituting for Ia(s) yields: 

T(s)

Kt
(Ra + La s) + Kω ω(s) = Va (s) 

∴ T s =
[Va s − Kω ω(s)]Kt

Ra (1 + τas)
− − − − − (5) 

where  τa =
La

Ra
=armature time constant. 

From equations (4) and (5): 

t 

ω(t) 

VaKt  

FRa + Kt Kω 
 

Response of the motor speed to a 

step change in motor voltage Va . 
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From equations (4) and (5) and neglecting TL yields: 

ω s F(1 + sτm ) =
[Va s − Kω ω(s)]Kt

Ra (1 + sτa)
 

  

ω s [FRa 1 + sτa  1 + sτm + KtKω ] = KtVa s  

 

ω s 

Va s 
=

Kt/FRa

KtKω 
FRa

+  1 + sτm  1 + sτa 
 

 

2-Field controlled d.c. motors: 

 

 

 

 

 

 

 

 

La Ra 

Va 

Ia 

Ea M 

Lf Rf 

If 

Vf 

field 

circuit 

Mechanical  

Load 

ω 

J , F, TL 

+ 

_ 

Kt 

𝐊𝛚  

T(s) Ia(s) Va(s) ω(s) 

TL(s) 

+ 

_ 
𝟏

𝐑𝐚(𝟏 + 𝛕𝐚𝐬)
 

𝟏

𝐅(𝟏 + 𝐬𝛕𝐦)
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Armature applied voltage & armature current are assumed to be constants. The 

armature current is applied from a suitable current source. 

Vf = IfRf + Lf

dIf

dt
 

Vf s = If s Rf + LfsIf s = If s (Rf + sLf) 

∴
If s 

Vf s 
=

1

Rf(1 + sτf)
− − − −(1) 

where  τf =
Lf

Rf
 =field time constant. 

T = K . Φ . Ia =  Ka If 

∴
T(s)

If(s)
=  Ka − − − −(2) 

T = J
dω

dt
+ Fω 

∴ T(s) = Jsω(s) + Fω(s) 

∴
ω(s)

T(s)
=

1

F(1 + sτm )
− − − −(3) 

multiplying equation (1), (2), (3) yields 

If s 

Vf s 
 .

T(s)

If(s)
 .

ω(s)

T(s)
=

ω(s)

Vf s 
  

 

∴
ω(s)

Vf s 
=

Ka/FRf

 1 + sτf  1 + sτm 
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D.C. Generator Dynamics: 

 

 

 

 

 

 

 

 

How does the armature induced e.m.f. of  a d.c. generator respond to a change in field 

current? How does the armature winding current of the d.c. generator respond to 

changes in field current? These are questions that are treated here. 

a-No external generator load: 

Vf = RfIf + Lf

dIf

dt
 

Vf s = RfIf(s) + LfsIf s  

∴
If s 

Vf s 
=

1/Rf

(1 + sτf)
− − − −(1) 

where  τf =
Lf

Rf
  

Ea = K . Φ . ω =  Kf  . If   (neglecting saturation) 

Ea (s) =  Kf  . If(s) 

Ea (s)

If(s)
=  Kf − − − −(2) 

from (1) and (2) 

Ea (s)

If(s)
 .  

If(s)

Vf(s)
=

Kf/Rf

1 + sτf
 

 

La Ra switch 

Ea G 

L 

R 

Prime 

mover 

constant 

speed 

Lf 

If 

Rf 

Vf 



- 66 - 
 

 

Ea (s)

Vf(s)
=

Kf

Rf(1 + sτf)
− − − −(3) 

 

 

 

 

b-Generator dynamics including the effect of the load: 

Ea = IaRa + La

dIa

dt
+ Ia R + L

dIa

dt
 

Ea (s) = Ia s  Ra + R (1 + sτA ) 

where   τA =
La +L

Ra +R
 = armature circuit time constant. 

∴
Ia s 

Ea (s)
=

1

 Ra + R (1 + sτA )
− − − − − (4) 

from (3) and (4) 

Ia s 

Ea (s)
 .

Ea (s)

Vf(s)
=

Ia s 

Vf(s)
 

 

Ia s 

Vf(s)
=

Kf

Rf Ra + R (1 + sτA)(1 + sτf)
 

 

 

 

 

 

 

Kf 

Ea(s) If (s) 
Vf(s) 

𝟏

𝐑𝐟(𝟏 + 𝐬𝛕𝐟)
 

𝟏

(𝐑𝐚 + 𝐑)(𝟏 + 𝐬𝛕𝐀)
 Kf 

Ea(s) If(s) 
Vf (s) 𝟏

𝐑𝐟(𝟏 + 𝐬𝛕𝐟)
 

Ia(s) 
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Example: A d.c. generator has a field winding resistance of 40 Ω and a field 

inductance of 8 H. The generated e.m.f. per field ampere is 100 and the magnetization 

curve is linear. The armature winding resistance and leakage inductance are 

respectively 0.1 Ω and 0.2 H. The load resistance and inductance are respectively 5 Ω 

and 2.35 H. Determine the time solution for the armature current when a field voltage 

of 102 V is applied to the field winding. Assume that the prime mover is running at 

rated speed and that the load switch is closed. 

Ia s 

Vf(s)
=

Kf

Rf Ra + R (1 + sτA)(1 + sτf)
 

Kf = 100 

τf =
Lf

Rf
=

8

40
=

1

5
 

τA =
La + L

Ra + R
=

0.2 + 2.35

0.1 + 5
=

1

2
 

Vf s =
Vf

s
=

102

5
 

∴ Ia s =
102

5
 .

100

40(0.1 + 5)
.

1

1 +
𝑠
2

 .
1

1 +
𝑠
5

 

=
500

5 2 + 𝑠 (5 + 𝑠)
=

C1

s
+

C2

2 + s
+

C3

5 + s
 

C1 = [
500

 2 + 𝑠  5 + 𝑠 
]𝑠=0 = 50 

C2 = [
500

𝑠 5 + 𝑠 
]𝑠=−2 = −83.333 

C3 = [
500

𝑠 2 + 𝑠 
]𝑠=−5 = 33.333 

Ia s =
50

s
+

33.333

5 + s
−

83.333

2 + s
 

∴ Ia t = 50 + 33.333e−5t − 83.333e−2t 
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Generator-motor set dynamics: 

 

 

 

 

 

 

 

 

 

 

A method of speed adjustment that is employed in industry whenever control over a 

wide range is required is shown above. The armature voltage is controlled by 

controlling the field current of the generator. 

Vf = RfIf + Lf

dIf

dt
 

∴
If s 

Vf s 
=

1

Rf(1 + sτf)
− − − −(1) 

where  τf =
Lf

Rf
  

Eg(s)

If(s)
=  Kf     (V/A) − − − − − −(2) 

Eg = Ia Rg + Lg

dIa

dt
+ Ia Rm + Lm

dIa

dt
+ Em  

Em = Kωω 

Eg − Kωω = Ia Rg + Rm + (Lg + Lm )
dIa

dt
 

Eg(s) − Kωω(s) = Ia s R + (Lg + Lm )sIa (s) 

Lg Rg 

Eg G 

Prime 

mover 

n 

constant 

M Lf 

If 
Rf 

Vf Load 

ω 

J , F 

Ifm 

Ia 

Lm Rm 

Em 
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∴
Ia (s)

Eg(s) − Kωω(s)
=

1

R(1 + sτA )
− − − −(3) 

 

where  τA =
Lg +Lm

Rg +Rm
 

T = KtIa   (constant motor field current) 

∴
T(s)

Ia(s)
= Kt − − − − − −(4) 

T = J
dω

dt
+ Fω 

∴
ω(s)

T(s)
=

1

F(1 + sτm )
− − − −(5) 

where τm =
J

F
= mechanical time constant. 

from equation (1) and (2): 

Eg(s)

Vf(s)
=

Kf

Rf(1 + sτf)
− − − −(6) 

from equation (3), (4) and (5): 

ω(s)

Eg s − Kωω(s)
=

Kt

FR(1 + sτA)(1 + sτm )
 

ω s  KtKω + FR 1 + sτA  1 + sτm  = KtEg s  

∴
ω s 

Eg s 
=

Kt

 KtKω + FR 1 + sτA  1 + sτm  
− − − − − (7) 

from equation (6) and (7): 

ω s 

Vf(s)
=

KtKf

Rf(1 + sτf) KtKω + FR 1 + sτA  1 + sτm  
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The Amplidyne generator: 

 

 

 

 

 

 

 

 

 

 

 

 

The amplidyne is basically a d.c. generator. It is driven at constant speed by a suitable 

motor which serves as a source of energy for the unit. The magnitude of its output 

voltage is controlled by the amount of field current through the control winding. The 

principles of operation is as follows: A small current flowing in the control winding 

creates a flux Φd with the direction shown. This flux will induce e.m.f. Eq between 

Drive 

motor 

d.c. 

motor Lc 

Ic 
Rc 

Vc 
Load 

ω 

J , F 

Control 

field 

winding 

Φd 

 
Φq 

compensating 

winding 

Load switch  

quadrature axis series 

field 

motor field winding 

Id 

Iq 

d 

d 

q q 

𝟏

𝐅(𝟏 + 𝐬𝛕𝐦)
 + 

_ 

Kt 

𝐊𝛚  

Ia(s) Eg(s) 
ω(s) 

𝟏

𝐑(𝟏 + 𝐬𝛕𝐀)
 

T(s) 

_ 
Kf 

If(s) 𝟏

𝐑𝐟(𝟏 + 𝐬𝛕𝐟)
 

Vf(s) 
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brushes qq due to armature rotation. This e.m.f. will cause large short circuit current Iq 

to flow producing flux Φq which in turn will produce e.m.f. Ed between brushes dd. 

The transfer function of the amplidyne without load: Ed is the output and Vc is the 

input. 

 Vc = RcIc + Lc
dIc

dt
 

∴
Ic s 

Vc s 
=

1

Rc(1 + sτc)
− − − −(1) 

where  τc =
Lc

Rc
 = the control winding time constant. 

Eq = K1Φd                                     Eq = KΦd𝜔 

where K1 = A function of the armature speed. 

∴ Eq = KqIc     (neglecting saturation & assuming complete compensation for the 

                          armature reaction in the d-axis) 

∴
Eq s 

Ic s 
= Kq − − − − − −(2) 

Eq = IqRq + Lq

𝑑Iq

𝑑𝑡
 

∴
Iq s 

Eq s 
=

1

Rq(1 + sτq)
− − − −(3) 

where:     Rq =  total resistance in the quadrature axis circuit. 

                Lq  = total inductance in the quadrature axis circuit. 

                Iq  = current flowing in the quadrature axis circuit. 

               𝜏𝑞 =
Lq

Rq
 

Ed = KdIq  

∴
Ed s 

Iq s 
= Kd − − − − − −(4) 

Multiplying equation (1) , (2) , (3) and (4) gives: 
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Ed s 

Vc s 
=

KqKd

RcRq
.

1

(1 + sτc)(1 + sτq)
− − − − − − − (5) 

 

Amplidyne transfer function with connected load: 

Ed = IdRd + Ld

dId

dt
+ Eb  

where:     Rd=  total resistance in the direct-axis circuit. 

                Ld  = total inductance in the direct-axis circuit. 

Ed = IdRd + Ld

dId

dt
+ Kωω 

∴
Id s 

Ed s − Kωω(s)
=

1

Rd (1 + sτd)
− − − −(6) 

where   𝜏𝑑 =
Ld

Rd
= direct axis path time constant. 

T = KtId  

T s 

Id s 
= Kt − − − − − −(7) 

T = J
dω

dt
+ Fω 

ω(s)

T(s)
=

1

F(1 + sτm )
− − − −(8) 

Multiplying equation (6) , (7) and (8) gives: 

ω(s)

Ed s − Kωω(s)
=

Kt

FRd (1 + sτd )(1 + sτm )
 

ω s  KtKω + FRd 1 + sτd  1 + sτm  = KtEd s  

∴
ω s 

Ed s 
=

Kt

KtKω + FRd 1 + sτd  1 + sτm 
− − − − − (9) 

Multiplying equation (9) and (5) gives: 
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ω s 

Vf(s)
=

KqKd Kt/RcRq Rd F

(1 + sτc)(1 + sτq)   1 + sτd  1 + sτm +
KtKω
FRd

 
 

 

In applications required displacement rather than velocity: 

ω =
𝑑𝜃

𝑑𝑡
 

ω 𝑠 = 𝑠 𝜃(𝑠) 

∴
𝜃(𝑠)

ω 𝑠 
=

1

𝑠 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 

_ 

Kt 

𝐊𝛚  

Id(s) Ed(s) 
ω(s) 

𝟏

𝐑𝐝(𝟏 + 𝐬𝛕𝐝)
 

T(s) 

_ 
Kd 

Iq(s) 𝟏

𝐑𝐪(𝟏 + 𝐬𝛕𝐪)
 

Eq(s) 

Kq 

Ic(s) 𝟏

𝐑𝐜(𝟏 + 𝐬𝛕𝐜)
 

Vc(s) 

𝟏

𝐅(𝟏 + 𝐬𝛕𝐦)
 

Vc(s) 𝐊𝐪𝐊𝐝/𝐑𝐜𝐑𝐪

(𝟏 + 𝐬𝛕𝐜)(𝟏 + 𝐬𝛕𝐪)
 + 

_ 

𝐊𝛚  

Ed(s) 
ω(s) 

_ 

𝐊𝐭/𝐅𝐑𝐝

(𝟏 + 𝐬𝛕𝐝)(𝟏 + 𝐬𝛕𝐦)
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Servomotors & T.F. 

Sheet NO.5 

1- A two-phase, four-pole servomotor is energized by an auxiliary winding voltage 

that is 90

 out of phase with the main winding voltage. The main winding voltage 

rating at 60 Hz is 75 V. The motor parameters are as follows: 

                                 r1 = 50 Ω                                      r2
′ = 100 Ω 

                                 x1 =120 Ω                                    xm = 100 Ω 

The rotor leakage reactance is negligible. Compute the developed torque at a slip of 

0.4 when the auxiliary voltage is 37.5 V. 

                                                                                                           ( 17.89 m Nm) 

 

2- Appropriate no-load tests on a two-phase servomotor rated at 115 V, 60 Hz, two-

poles, give the following parameters: 

                                 r1 = 302 Ω                                      r2
′ = 1380 Ω 

                                 x1 =385Ω                                       x2
′ = 385 Ω 

                                                         xm = 695Ω 

This servomotor is operated with Va=1150

 and Vb=80-90


 V, and a rotor slip of 

0.25. 

a- Draw the appropriate equivalent circuit for the positive- and negative- sequence 

voltage sets. Show the proper applied voltage in each case. 

b- Compute the developed torque, expressed in synchronous watts and Nm. 

c- What is the r.m.s. value of the current that flows through the control winding? 

d- Compute the torque developed by this motor at a slip of 0.25 when it operates as a 

balanced two-phase motor, i.e., Va=1150

 and Vb=115-90


 V. 

e- Compute the developed torque when the motor operates as a balanced two-phase 

motor at a slip of 1.75. 

f- By using the results of parts (d) and (e), compute the torque developed by this motor 

at a slip of 0.25 when Va=1150

 and Vb=80-90


 V. 
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g- When this motor operates at a slip of 0.5, the positive-sequence current is found to 

be 80.5-51.1

 mA and the negative-sequence current is 38.5-98.4


 mA. Determine 

the voltages applied to the main and control windings. Find the control winding 

current. 

(97.5 V; 17.5 V; 1.10506 W; 2.9312 m Nm; 0.0682 A; 4.6207 m Nm; 16.8546 m Nm; 

2.9311 m Nm; 115.209-0.6777

 V; 75.52062-50.838


 V; 61.31-113.6164


 mA) 

 

3- The servomotor is problem (2) is operated with the main and control winding 

voltages always in quadrature. 

a- Compute the starting torque when the control winding voltage equals the main 

winding voltage, i.e. , K=1. 

b-  Determine the starting torque for K=0.5. 

                                                                      (13.8734 m Nm; 6.9367 m Nm) 

 

4-  A two-phase servomotor has 1150

V applied to the main winding. At a particular 

point of operation corresponding to a control winding voltage of 75-80

V, the 

positive- and negative-sequence impedances are 22067

Ω and 17557


Ω 

respectively. 

a- Determine the positive and negative sequence components of the main and control 

winding currents. 

b- Find the total values of the main and control winding currents. 

(0.4302479-63.055192

A; 0.1232904-74.56636


A; 0.4302479-153.05519


A; 

0.123290415.43364

A; 0.55161-65.61165


A; 0.3104138-148.50905


A) 

 

5-  A two-phase, two-pole, a.c. servomotor equipped with a drag-cup rotor has the 

following parameters at 60 Hz: 

                                 r1 = 360 Ω                                      r2
′ = 260 Ω 

                                 x1 =50Ω                                       x2
′ = 50 Ω 
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                                                         xm = 890 Ω 

The main winding is identical to the control winding , and both are rated at 115 V. The 

source of the control winding voltage is arranged to provide a quadrature voltage at all 

times. The internal impedance of this source is negligibly small. 

a- Determine the developed torque in synchronous watts for K=0.8 and S=0.3. 

b- Calculate the power supplied to the main winding in part (a). 

c- Calculate the power supplied to the control winding in part (a). 

d- Calculate the motor efficiency for the conditions  in part (a). 

e- Determine the developed torque in synchronous watts for K=1 and S=0.3. 

f- Repeat part (e) for K=1 and S=1.7. 

g- Find the developed torque in Nm  for K=0.7 and a rotor slip of 0.3. 

(10.534639 W; 13.5433 W; 6.7832835 W; 36.2788 %; 13.175 W; 13.70481 W; 

24.4317 m Nm) 

 

6-  Determine the transfer function that relates the voltage E2 to the input voltage E1 in 

the system shown below. The system parameters are as follows: 

Generator: Lf = 50 H, Rf = 50 Ω , Ra = 1 Ω , La = 1 H. 

e.m.f. constant: Kg=100 V/field ampere. 

Low-pass filter: L=1 H, R=1 Ω. 

 

 

 

 

 

 

 

 

 

 

La Ra 

E2 
 

L 

R 

constant 

speed 

Lf 

Rf 

E1 

Separately-excited 

d.c. generator 

Low-pass 

filter 

𝑬𝟐(𝒔)

𝑬𝟏(𝒔)
=

𝟏

 𝟏 + 𝒔 (𝟏 + 𝒔)
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7- The motor shown below is operated at constant field current. The motor parameters 

are : Ra = 0.5 Ω ; La = 0 ; Kω = 2 V/rad/s ; Kt =6 .78 Nm/A , and F=1.356 Nm/rad/s. 

The equivalent inertia is 56.952 N.m.s
2
. 

a- What is the numerical expression for the transfer function that relates the motor 

speed in radians per second to the voltage applied to the armature circuit? 

b- If the applied armature voltage is a step of 200 V magnitude, find the steady state 

speed of the motor. 

c- Obtain the complete expression for the motor speed from the instant the voltage of 

part(a) is applied to the time that steady-state reached. 

d- Draw the block diagram of this system using the numerical values. 

e- The application of 100 V to the armature of the motor at no load gives a speed of 

47.6 rad/s. 

1- If a load torque of 54.24 N.m. is applied to the motor shaft, find the new 

operating speed. 

2- How long does it take for the new speed to be reached? 

f- Repeat parts (a) to (e) using La=0.05 H. 

 

 

 

 

 

 

 

 

 

 

8- Determine the different equation of the system shown below in terms of the system 

parameters. Consider that the armature leakage inductance of the generator and motor 

are both negligible. Take the generator voltage constant as Kg in volts per field 

La Ra 

Va 

Ia 

Ea M 

Lf Rf 

If 

Vf 

field 

circuit 

Mechanical  

Load 

ω 

J , F, TL 
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ampere, the motor speed constant as Kω in volts per radian per speed, and the motor 

torque constant as Kt in Nm per armature ampere. 

 

 

 

 

 

 

 

9- A 10 h.p. armature controlled d.c. motor drives a load whose viscous friction 

coefficient is 2.712 Nm/rad/s and whose angular inertia is 23.73 Nm.s
2
. The field 

winding is separately excited and maintained fixed. The corresponding motor 

parameters are then as follows: 

                          Ra = 0.3 Ω  

                          Kω = 1 V/rad/s  

                          Kt = 2.034 Nm/arm. amp. 

The armature winding inductance is negligible. 

a- Compute the steady-state speed corresponding to a step applied armature voltage of 

210 V. 

b- How long does the motor take to reach within 95% of the steady-state speed of part 

(a)? 

 

10- The motor of problem (9) is now used as a field-controlled d.c. machine. The 

armature is assumed to be energized from a constant current source. The field winding 

parameters are: Rf = 50 Ω ; Lf =20 H. The motor torque constant  Kf = 81.36 Nm/field 

amp. 

a- Draw the block diagram of the transfer function. 

b- Calculate the value of steady-state speed for a step applied field voltage of 100 V. 

Rg 

G M Lf 

If 
Rf 

E1 Load 

ω 

J , F 

Rm 

 

Amplifier 

gain, Ka Kg 

Kω 

Kt 
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c- Approximately how long does it take the motor to reach within 95% of the final 

speed in part (b). 

 

11- A two-servomotor has a standstill torque at full control winding voltage of 

28.248*10
-3

 Nm. Also , at full control voltage the no load speed is 100 rad/s. The 

motor torque constant is 0.7062*10
-3

 Nm/V or 28.248*10
-3

 Nm/control ampere. The 

control winding inductance is 6 H. Assume linear torque-speed curves and a rotor 

inertia of 3.531 Nm.s
2
. 

a- Determine the complete numerical expressions relating motor displacement to 

control winding voltage. 

b- If the control winding voltage is taken from an amplifier having a voltage gain of 

200 , write the total transfer function expression. 

c- Place a unity feedback loop around the transfer function of part (b) and find the 

closed loop transfer function. 

d- what is the time equation of the system of part (b). 

e- what is the time equation of the system of part (c). 

 

12- An amplidyne generator is used as a power stage that drives the d.c. motor of 

problem (9). The amplidyne has a control winding resistance of 400 Ω , a quadrature-

axis circuit resistance of 0.1 Ω, and a direct-axis circuit resistance of 0.5 Ω. The 

voltage induced in the cross-axis for each milliampere of control current is 0.1 V, and 

the voltage induced in the direct axis for each ampere in the quadrature axis is 5 V. 

The inductance of the control winding is 50 H and that of the quadrature axis is 2 mH. 

a- Determine the transfer function that relates motor output speed to amplidyne 

control winding voltage. 

b- For a control voltage of 5 V, compute the steady-state speed of the motor. 

c- Identify the predominant factor in establishing the dynamic response of this 

amplidyne-motor system. 

 


